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Abstract—An important challenge in mobile sensor networks
is to enable energy-efficient communication over a diversity
of distances while being robust to wireless effects caused by
node mobility. In this paper, we argue that the pairing of two
complementary radios with heterogeneous range characteristics
enables greater range diversity at lower energy cost than a
single radio. We make three contributions towards the design
of such multi-radio mobile sensor systems. First, we present
the design of a novel reinforcement learning-based link layer
algorithm that continually learns channel characteristics and
dynamically decides when to switch between radios. Second, we
describe a simple protocol that translates the benefits of the
adaptive link layer into practice in an energy-efficient manner.
Third, we present the design of Arthropod, a mote-class sensor
platform that combines two such heterogneous radios (XE1205
and CC2420) and our implementation of the Q-learning based
switching protocol in TinyOS 2.0. Using experiments conducted
in a variety of urban and forested environments, we show that
our system achieves up to 52% energy gains over a single radio
system.

I. INTRODUCTION

The choice of the wireless radio is perhaps the single most
crucial design parameter for designing mobile sensor networks
such as DieselNet [2] or ZebraNet [8] 1. The wireless radio
must enable node-to-node and node-to-basestation commu-
nication over distances dictated by application needs, while
being energy-efficient and robust to wireless effects introduced
by mobility patterns. With advances in communication tech-
nologies, a spectrum of wireless radios are available to meet
the needs of a sensor network. Table I depicts four common
wireless radios used by today’s sensor network platforms. As
shown in the table, wireless radios are generally designed with
a communication range in mind. For example, the Xtend and
the XE1205 radios are designed for low-bitrate long-range
communication over distances of a mile or more. In contrast,
802.11 and CC2420 radios enable high and low bandwidth
communication, respectively, over short ranges of hundreds of
feet or less. Thus, the sensor network designer must make
a critical design choice. She can either choose a long-range
radio enabling nodes to communicate over long distances but
at the expense of expending more power. Or she can choose
a shorter range radio that is more power-efficient but forego
communication over longer distances.

1This research was supported by NSF grants CNS-0626873, CNS-0615075,
CNS-0520729, CNS-0546177, and EEC-0313747.

Note that traditional techniques for range adaptation via
power control or range elongation via the use of directional an-
tennas do not address this tradeoff for mobile sensor networks.
As shown in Table I, modern radios support range adaptation
using power control — a higher power setting can be used
to increase the communication range of the radio. While it is
possible to choose a long range radio and use lower power
settings for short range communication, doing so is far less
efficient than using a short range radio for communicating over
shorter distances. As shown in Table I, the lowest power setting
on the XTend radio is still 561x more expensive than using
the CC2420 radio. Similarly, it is not feasible to use a radio
designed for short range communication and to “increase”
its range by using directional antennas. Directional antennas
have been used successfully to increase the communication
range of such radios – for example, the Mobisteer project [11].
However, since directional antennas are bulky, it is not feasible
to deploy them in many mobile sensor network settings;
for instance, animal tracking deployments require compact
packaging of the mobile sensors.

In this paper, we argue that pairing two complementary
radios with heterogeneous range characteristics enables mobile
sensor nodes to achieve a significantly greater range diversity
at a lower total energy cost when compared to a single radio.
The key idea is to operate each radio over a range where it
is more efficient and to switch to the other radio whenever
a mobile node moves from one radio’s effective range to
another. In this manner, we achieve the best-of-both-worlds
and eliminate the drawbacks of a single radio platform.

We present the design of a heterogeneous multi-radio plat-
form and system for handling range dynamics, where the
choice of which radio to use for communication is made
dynamically based on current channel characteristics, specif-
ically wireless channel variations caused by device mobility
and range effects. To shield applications from the increased
complexity of choosing between radios, we present the design
of a unified link layer that transparently chooses which radio
to employ for communication between a pair of nodes. At the
core of such a link layer is an adaptive algorithm that can
dynamically decide when to use each radio for a wide range
of mobility patterns. Such an algorithm is non-trivial since it
needs to continually monitor and “learn” channel character-
istics for the two radios and determine which one provides



Radio Bandwidth transmit power levels (min, max), steps transmit energy/bit (min,max) max outdoor range
CC2420 250 Kbps (-25,0dBm),31 102,208nJ/bit 80m
802.11b 11 Mbps (0,15dBm),4 -,120nJ/bit 100m
XE1205 38.1 Kbps (0,15dBm),4 1803,5276nJ/bit 80m - 800m
XTend 9.6kbps (0,30dBm),4 57.3,380.2uJ/bit 2-3km

TABLE I
A SPECTRUM OF RADIO HARDWARE

the lowest energy communication channel. Additionally, the
practical implementation of such an adaptive link layer on
sensor platforms presents a significant challenge since the
energy and resource overhead for monitoring, learning, and
switching between radios needs to be kept as low as possible.

Contributions

In this paper, we propose a novel multi-radio hardware and
link layer solution for range-adaptive mobile wireless sensor
networks. Our work has three major contributions:

Q-Learning based Unified Link Layer: Our first contribu-
tion is a reinforcement-learning based algorithm that enables
adaptatation across radios with different power/range tradeoffs.
This algorithm learns the characteristics of radio channels
through exploration and continually adapts to use the more
efficient one.

Multi-radio Switching Protocol: Our second contribution
is a energy-efficient switching protocol that translates the
benefits of the Q-learning based adaptation algorithm into
practice. The protocol transparently switches between radios,
thereby providing the abstraction of a unified link layer to
applications executing on multi-radio platforms.

Heterogeneous Multi-Radio Sensor Platform: Our third
contribution is the design of a new mote-class sensor platform,
the Arthropod, that pairs two radios with complementary
characteristics: the CC2420 and XE1205. These radios have
very different maximum ranges (80 meters vs 800 meters),
and also significantly differ in their maximum power output
(0 dBm vs 15 dBm) Thus, the Arthropod offers good potential
for range adaptation to handle mobility effects.

We conduct mobility experiments using our hardware and
software prototype in a variety of settings—urban/indoor,
urban/outdoor, foliage— and for a range of mobility patterns
—continuous and nomadic— that are typical in mobile sensor
network deployments. Our experiments show that we obtain
up to 52% improvements in energy efficiency over using only
one of the two radios on the platform, while achieving a loss
rate only marginally higher than using just the high-power
radio.

II. RELATED WORK

Since radio diversity presents clear benefits along a number
of dimensions: energy, robustness to interference, increased
bandwidth and ease of deployment, a number of multi-radio
systems have been designed in recent years. This has primar-
ily involved a separation of control tasks such as neighbor
discovery or neighbor wakeup from data transmission. Such

a separation has been achieved by pairing 802.11 with the
CC2420 [10] or the CC1000 [9], [13], [18], 802.11 with a
custom radio for Wake-On-Wireless [17], and 802.11 with
an XTend [21] radio [2] for the UMassDieselNet DTN [4].
While such static allocation of roles to radios offers useful
benefits, it does not fully utilize the potential of multi-radio
systems. In our system, either radio can be used for control or
data communication and the choice of which radio to use for
communication is made dynamically based on current channel
characteristics.

Multiple radio interfaces have also been exploited for in-
creasing bandwidth and tolerating disconnection on mobile
wireless devices. The Mobile Access Router [16] exploits
multiple types of radio interfaces (eg. 802.11, GPRS, etc),
or interfaces tied to different service providers to aggregate
bandwidth and avoid stalled transfers. A related technique is
PTCP that uses link-layer striping [7] to achieve a similar
goal. All these mechanisms are aggressive in using multiple
interfaces and do not take energy into account when choosing
an interface. An updated Wake-On-Wireless system [1] and
Context-for-Wireless [15] use 802.11 with cellular radios for
data transmissions, with a static preference given to 802.11
when available.

One dynamic, energy-aware system is Coolspots, which
combines 802.11 with Bluetooth [12]. Coolspots chooses
Bluetooth transmission when available, and 802.11 when
Bluetooth is insufficient to meet the bandwidth requirements.
However, the choice of when to use a radio is made using
coarse-grained feedback from the network layer, and neglects
the benefits of a fine-grained, link-layer approach; this type of
approach is useful because it allows a system to react quickly
to short term dynamics. Other systems, such as Triage extend
this paradigm from multiple radios to multiple platforms [3];
however in this work a single platform is sufficient to process
data transmission from both radios.

Recent work on wireless mesh networks has explored de-
signs with multiple radios per node. For instance, carefully
planned mesh networks can exploit multiple radios to make
channel assignment more effective [5]. However, these ap-
proaches have not addressed the problem of algorithms to
dynamically react to changing channel characteristics, and do
not consider energy efficiency.

In sum, it is our view that ours is the first system to
use multiple low-power radios for link-layer, energy-aware,
transmission of data, and constitutes an important step towards
a truly fine-grained, energy-adaptive, multi-radio link layer
system.



Algorithm 1 Q-Learning
1: Initialize Q(s, a) aribitrarily
2: Repeat(for each step of episode):
3: Choose a from s using policy derived from Q (ε-greedy)
4: Take action a, observe r, s′

5: Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
6: s← s′;
7: until s is terminal

III. Q-LEARNING BASED MULTI-RADIO LINK LAYER

Even more so than their fixed counterparts, radios in mobile
environments incur unpredictable and widely varying con-
ditions due to channel effects such as shadowing, fading,
and multi-path effects, as well as varying interference. While
adapting using multiple radios, the channel has hidden state:
conditions on the radio not being used. In order to avoid local
minimum, the system must periodically attempt to explore
other operating states.

Such a system can be compactly implemented using learn-
ing algorithms. In particular, we have chosen to use a rein-
forcement technique called Q-Learning that provides exactly
the properties required: a simple reward for making correct
decisions and an ability to explore other operating points
periodically [19]. In this section, we introduce some concepts
from reinforcement learning and outline the design of the
adaptation algorithm that is at the core of our unified multi-
radio link layer.

A. Introduction to Q-Learning

Q-Learning is a reinforcement-learning technique to enable
decision-making for agents in an unknown environment [19].
An agent continually takes an action from a set of possible
actions and observes some reward associated with the out-
come of their decision. In Q-Learning, there is a ”Q-Matrix”
that updates according to the reward received, and the state
transitions. This Q-Matrix is used to determine which action
is optimum while an agent is in a given state. A Q-Matrix
has a corresponding Reward-Matrix that contains the reward
to be received by the agent for arriving at a particular state. In
Q-Learning, the agent will occasionally take a random action
to explore states that have not been visited for some time.

Algorithm 1 shows the procedure for Q-Learning [19]. The
learning algorithm uses three parameters — the learning rate
α, discount factor γ, and the ε-greedy parameter. The learning
rate places a limit on how quickly learning occurs. If this
parameter is set too low, it will take a long time for the
system to learn, while if set too high, will cause the Q-
Values to never converge to optimal values. The discount
factor is used to determine how much emphasis is placed
on future rewards. Setting this parameter low will optimize
for immediate rewards, while setting this parameter high
will place more importance on future rewards. Parameter ε
determines with what probability a random action is explored,
rather than choosing an action with the highest Q-Value.

B. Designing a Unified Link Layer using Q-Learning

We now describe how Q-Learning can be used to adapt
between different radios in the case of a dual-radio sensor
node. Our discussion assumes the availability of a multi-
radio platform with complementary radios (e.g. a short-range
low-power and long-range high-power radio). In Section V,
we describe one such platform that we have designed that
combines a CC2420 and XE1205 radios. We also assume a
typical DTN traffic model where mobile nodes buffer data
in bundles during periods of disconnection, and transfer data
between each other when they come in contact. For example,
in DieselNet [2], when a bus node comes in contact with a
stationary roadside AP, the bus node first transfers bundles
that it has to the AP, followed by the AP transferring buffered
bundles to the bus.

We first consider the case where each radio is set to a single
power level. In this case, Q-Learning uses a two state model
(one for each radio) where the action that is taken by the
agent is either to stay with the same radio or switch to the
alternate radio. The agent will switch radios if the conditions
deteriorate on the current radio (or if it gets disconnected), or
if conditions improve on the alternate radio. These dynamics
are captured in the Q-Matrix at a rate governed by α and
γ through feedback from packets transmitted over the current
radio, as well as from exploration packets transmitted over the
other radio interface (with frequency determined by ε). If the
agent finds that the alternate radio has a higher Q-Value (i.e.
lower energy consumption), the agent will choose to use this
new radio interface.

This two state model may be expanded to an n-state model,
where each state represents a radio at a particular transmit
power level, each representing a particular range/power trade-
off. For example, four states would be required for two radios,
each with two transmit power level options. However, increas-
ing the number of states comes at the cost of either increased
exploration overhead or decreased exploration frequency since
exploration requires time and energy. We reduce this overhead
in the n-state case by considering only three states at a time —
the current state and two adjacent states, a lower-range/lower-
power state, and a higher-power/higher-range state. Both these
adjacent states could be on the same radio or a different radio.
Thus, exploration is limited to only two states at any time.

Reward matrix: A key aspect of Q-Learning adaptation is
defining the reward matrix R for each state. The unified link
layer receives information about the number of retransmission
attempts and number of congestion backoffs for each packet
that it transmits through either radio; these metrics are used to
determine the reward for the current choice of radio / power
level. We model the reward as an estimate of the amount
of energy associated with the channel metrics collected for
a given packet. The amount of energy to transmit a given
packet is a function of packet size, static radio parameters
such as receive/transmit power and channel sense time, number
of retransmission attempts, and the number of congestion
backoffs. Energy is a cost, rather than a reward, so its value



is negative. The following equation shows how rewards are
calculated where i is the number of retransmissions:

r[i] = −(i · (PacketSize · ByteT ime · TxPower +

AckT imeOut · RxPower)

+RxPower · (AckRTT )

+PacketSize · ByteT ime · TxPower)

While the above equation determines the reward when a
packet is successfully transmitted, we also need to consider
the case when a packet is unsuccessful after a pre-defined
maximum number of retries. In this case, we want the Q-
Learning algorithm to progressively try higher power states
until it reaches the highest power state. To obtain this behavior,
when a packet transmission is unsuccessful on a low-power
state, we assign a large negative reward to encourage the
algorithm to switch to a higher power state sooner, thereby
limiting the number of lost packets. Once the highest power
state is reached, if packet transmission is still unsuccessful, a
zero reward is assigned since there is no point in switching
back to other lower power states until the connection is re-
established at the high-power state.

IV. MULTI-RADIO SWITCHING PROTOCOL

Translating the Q-Learning based switching algorithm to
a working protocol presents a non-trivial challenge. When a
sender decides to switch to or explore another radio, it needs to
notify the receiver of such an action. However, such an explicit
handoff may not always work, for example, the receiver may
be unreachable by the currently used radio due to mobility. A
trivial solution would be for the receiver to keep both radios
active at all times, obviating the need for handoff. However,
this option is clearly inefficient since it requires both radios to
be in receive mode, consuming significant energy. Thus, a key
challenge that we address is: how can we design a practical
protocol for switching between radios that is energy-efficient
and reliable?

In the rest of this section, we describe the sender and
receiver side design for our adaptive multi-radio block transfer
protocol. For simplicity, we consider a dual-radio system with
a high-power radio (HIGH) and low-power radio (LOW) with
only one power level per radio.

A. Sender State Machine

The state machine at the sender is shown in Figure 1. We
first describe the normal operation of the state machine before
discussing how we handle exceptional cases that arise due
to losses and disconnections. When data transfer starts, the
sender first needs to “wakeup” the receiver from its IDLE
state. There are many approaches to duty-cycling and wake
up (e.g. SMAC [22], BMAC [14]), and we assume that one of
these approaches are available for the radio. Once the wakeup
command is successful, the sender transitions from IDLE to
HIGH-ON state.

qOutput == EXP / 
Send(exp_pkt) 

LOW
ON Handoff

IDLE

qOutput == Low-ON / 
Off(high)

HIGH
ON

(qOutput == EXP || Low-ON) / -

qOutput == High-ON / 
Off(low)

Timeout || END_BLOCK / 
Off(low), Duty-cycle (high) 

END_BLOCK / 
 Off(low), Duty-cycle(high) Timeout || END_BLOCK / 

Off(low), Duty-cycle(high) 

(qOutput == EXP || High-ON) / -

Data / 
Send wakeup msg

Timeout / 
 Off(low), On(high) 

Fig. 1. Sender state machine. qOutput denotes the output of the Q-Learning
algorithm, which can be either explore, turn on low-power radio (low), or turn
on the high-power radio (high). Transitioning from the IDLE state requires a
wakeup message.

Switching and exploration between the radios requires a
handshake between the sender and receiver; first, the sender
sends a packet indicating that a switch needs to be done,
and if the packet is transmitted successfully, the sender and
receiver can synchronously switch states to the second radio
or explore on it. To perform such a handshake, the sender
state machine includes a handoff state in which both radios
are turned on. To illustrate, consider a switch from the HIGH-
ON to LOW-ON state triggered by the Q-Learning algorithm.
The state machine first sends a data packet while remaining
in the current state with the handoff flag set. If the packet
is successfully transmitted, the state machine transitions to
the HANDOFF state. (Note that the receiver is in the BOTH-
ON state at this point and can receive on both radios). From
this state, the sender can send a packet on the LOW radio to
transition to LOW-ON state. A similar process is done during
exploration. The sender and receiver transition synchronously
to the HANDOFF and BOTH-ON states respectively, and stay
in this state until exploration is complete, after which they
switch back to whatever state they were in earlier.

Finally, we also deal with various cases where the state
machines at the sender and receiver may become out-of-sync
due to lost packets/acks, or complete loss of connectivity on
one or both radios. If the LOW radio is currently in use and
becomes disconnected, the sender times out, transitions to the
HIGH-ON state and attempts to transmit using the long range
radio. (Note that the receiver switches to the BOTH-ON state
after a similar timeout, and is ready to receive on the HIGH
radio.). If this fails as well, then after another timeout, the
sender switches to IDLE mode since it means that the sender
and receiver are out-of-range of both radios.

B. Receiver State Machine

The state machine at the receiver is shown in Figure 2.
When data transfer starts, the receiver is in the IDLE state,
where it operates with the HIGH radio in duty-cycled mode,
and the LOW radio in off mode. This enables wakeup by the
long-range radio to maximize contact time between the sender
and receiver. The receiver is woken up out of this state by a
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HIGH
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EXPLORE || Timeout / 
On(low), On(high)

NEXT_STATE = HIGH / 
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Timeout || END_BLOCK / 
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END_BLOCK / 
 Off(low), Duty-cycle(high) END_BLOCK / 

Off(low), Duty-cycle(high) 

Wakeup / 
On(high), Off(low)

EXPLORE || Timeout / 
On(low), On(high)

Fig. 2. Receiver state machine

long preamble on the HIGH radio, and switches to the HIGH-
ON state. Switching between the two radios occurs through
a handoff state where both radios are switched on and ready
to receive. When the receiver gets a packet with the handoff
flag set, it transitions to the BOTH-ON state. It stays in this
state until the sender informs the receiver to switch to either
the LOW-ON or the HIGH-ON state. The receiver transitions
back to the IDLE mode when the END BLOCK flag is set in
a packet indicating that the sender has completed the current
transfer of a block.

The receiver state machine also handles a number of ex-
ceptional cases that may arise. When the receiver is in the
LOW-ON or HIGH-ON state and does not receive a packet
for a short duration, it transitions to the BOTH-ON state. This
enables the receiver to deal with two cases: (a) the sender
is using one radio whereas the receiver is out-of-sync and
listening on the other radio, (b) the sender is out of range of
the current radio but in range of the other radio. If no packet is
received in the BOTH-ON state, it implies that the sender has
dropped out of contact of both radios, therefore the receiver
switches back to the IDLE state.

Summary of benefits: Having described the sender and
receiver state machines, we now briefly describe the main
benefits of our switching protocol.

• Active mode efficiency: During a block transfer, we mini-
mize the amount of time for which both radios are turned
on at the sender and receiver. This ensures that our system
almost always consumes only as much energy as a single
radio system.

• Idle mode efficiency: A key advantage of our protocol is
that during idle times, only one receiver is operating in
duty-cycled mode and the other is off. Thus, idle listening
cost is minimized.

• Low packet overhead: All state transitions in our protocol
are triggered by flags set in data packets. There are
no additional control packets, hence our protocol has
extremely low packet overhead.

• Robustness: Our protocol is robust to channel vagaries
and different mobility patterns, and can recover from lost
packets/acks, disconnections, and out-of-sync states.

V. ARTHROPOD IMPLEMENTATION

We have built a prototype multi-radio platform called
Arthropod and have implemented the Q-Learning based adap-

(a) Hardware Prototype

Application

Unified link layer

XE1205 MACCC2420 MAC

XE1205 radioCC2420 radio

(b) Software Architecture

Fig. 3. System Components: (a)Hardware prototype comprising the Tinynode
and a CC2420 expansion board and (b)Unified Link Layer for the radios

tive link-layer and switching protocol. This section describes
the hardware and software implementation of our system.

A. Dual-radio Hardware

Our Arthropod sensor platform consists of a low-power
microcontroller and a pair of heterogeneous low-power radios.
The current prototype employs a MSP430 microcontroller, a
CC2420 radio, and an XE1205 radio. Rather than constructing
such a platform from scratch, we employed an existing Tinyn-
ode sensor platform [6], which contains a MSP430 processor
and the XE1205 radio, and augmented it with a custom-
built daughterboard comprising the CC2420 radio. Figure 3(a)
depicts the resulting prototype hardware of Arthropod.

The particular choice of the XE1205 and the CC2420
radios was governed by their complementary range-power
characteristics (as described in Table I). While the peak range
of the XE1205 is 2 kms for a bandwidth setting of 1.2 Kbps
and +15dBm power level, we were unable to get reliable trans-
mission on the XE1205 at this setting due to known calibration
problems with the TinyNode’s XE1205 radio. Therefore, we
use a data rate of 38.1 Kbps @+15dBm, at which setting
the maximum range is 800m. In contrast, the CC2420 cannot
transmit beyond 0dBm and thus has a maximum range of 80m.

B. Multi-radio Protocol Implementation

The software implementation for Arthropod is an adaptive
link-layer that unifies the individual MAC layers for the two
radios. We have implemented a unified radio interface as part
of the TinyOS-2.x operating system for motes [20].

TinyOS-2.x Radio Drivers: The interfaces to the CC2420
and XE1205 radios allow for fine-grain control of many pa-
rameters including link layer acknowledgements, clear channel
assessment, radio channel selection, data rate and transmit
power. Each radio MAC layer supplies feedback required by
our unified link layer: whether or not a packet was acknowl-
edged, and the number of congestion backoffs experienced for
the current transmission attempt.

Unified Link Layer: At an application level, our system
provides a unified link layer that determines the radio interface
currently best suited for communication (shown in Figure
3(b)). To the programmer, there is a single interface to send
and receive packets to and from the node.



Environment Mobility Pattern example scenario
urban-indoor continuous w/ obstructions people in a building
urban-outdoor continuous partial LOS moving vehicle
urban-outdoor nomadic bus w/ stops

foliage nomdic bus w/ stops

TABLE II
BRIEF SUMMARY OF DATASETS COLLECTED

Duty-cycling: Our implementation of the switching proto-
col uses the low power listen (LPL) protocol for duty-cycling
radios [14]. In this approach, the sender can wakeup the
receiver in a completely asynchronous manner by sending a
long preamble that is at least as long as the sleep cycle of the
receiver. The sender uses such a long preamble to “wakeup”
the receiver and initiate the block transfer.

While LPL is available as part of both the CC2420 and
XE1205 radio stacks in TinyOS 2.0, we experienced several
problems with the XE1205 LPL implementation. For example,
the XE1205 interface would occasionally silently drop a packet
transmission while reporting successfully acknowledged de-
livery to the receiver. To circumvent this problem, the IDLE
state switches off the long-range XE1205 radio and duty-
cycles the CC2420 radio. This is not ideal for reasons outlined
in Section IV — wakeup using the long-range radio ensures
greater contact duration between nodes. We believe that this
is a software problem with the XE1205 radio stack, and are
working on fixing the problem.

VI. EXPERIMENTAL EVALUATION

In this section, we present a detailed evaluation of the
Q-learning based unified link layer using a combination
of experiments using data traces, results from Q-Learning
running on an Arthropod mote, as well as implementation
benchmarks. Our evaluation has three parts. First, we evaluate
the performance of the Q-learning link layer in adapting to a
diverse set of mobility patterns. Second, using collected traces
we evaluate how well the learning algorithm handles power
control across the two radio interfaces. Finally, we present
benchmarks from an implementation of the link layer for an
Arthropod mote to demonstrate that the described Q-Learning
algorithm is efficient and has low resource usage.

A. Datasets

To ensure repeatable experimentation of the link layer,
we gathered datasets under different conditions using our
hardware prototype. We obtained four types of datasets that
are a good representation of mobility patterns found in mo-
bile sensor network deployments. Table II contains a brief
summary of all datasets collected.

In each experiment, we configure the long-range XE1205
radio to a data-rate to 38.1 kbps and power level 15 dbm,
whereas the short-range CC2420 radio transmits at the default
250 kbps at 0dbm. The traces are obtained by having both
the radios transmit packets back to back at the rate of about
2 pkts/second. For each packet, the number of backoffs and

retransmissions are logged in the local flash memory of the
sender, and retrieved later.

1) Traces showing continuous mobility: We obtained
datasets with continuous mobility to represent two practical
sensor application scenarios: wearable sensors and vehicular
sensor networks.

• Indoors: This trace was collected indoors within our
department. The receiver is stationary while the sender
moves up and down the length of the corridor of the
building (120 meters) transmitting packets while moving
at a normal walking speed. The nodes are obstructed from
each other by numerous walls as they move apart. The
up-and-down movement pattern is repeated five times.

• Outdoors: This trace was collected on a stretch of road
outside our department. The receiving node was placed on
a bus stop shelter; the sender approaches the receiver from
600 meters, initially obstructed by buildings and foliage.
The node briefly pauses at the bus shelter and continues
down the street another 300 meters disappearing behind
foliage and buildings. The sender moves at a rate of
roughly 9 meters/second.

2) Traces showing nomadic mobility: Nomadic mobility
refers to the case where nodes move for some time, pause
at a specific location for a while, and continue in the same
pattern. This type of movement behavior is common amongst
sensors monitoring people or a habitat sensor network. We
obtained two such traces:

• Urban Outdoor: This trace was collected at our campus
near some large HVAC buildings and parking lots. The
sender starts in close proximity to the receiver and moves
away at a normal walking speed. The sender pauses for
a minute at locations 50m, 60m, 80m, and 70m
away from the receiver, and finally returns to the receiver
location. Line of sight is limited during this trace resulting
in poor performance for the CC2420 radio.

• Habitat Outdoor: This trace was collected outdoors in
a wooded rural area with significant foliage. The sender
starts 100 meters from the receiver and approaches the
sender at a slow walking speed. The receiver pauses for
2 minutes near the receiver, and then moves away at a
slow walking speed to a location 100 meters away. At
all locations, significant number of trees introduce signal
attenuation. The XE105 has good connectivity for the
entire experiment, while the CC2420 moves in and out
of range.

B. Trace-driven Evaluation of Q-Learning

These experiments evaluate the performance of the Q-
learning algorithm in a MATLAB simulation environment
and its performance for the various mobility traces described
above. To get an accurate measure of the performance of
the Q-learning based link layer, we emulate the behavior of
the sender and receiver state machine (Section III) given the
sequence of packet losses observed in the traces. (Later, in
Section VI-D we show that this emulation accurately corre-
sponds to the performance of the real protocol in practice.)
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Fig. 4. Energy consumed per successful packet for each dataset and strategy
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Fig. 5. Percent Packets lost for the two radio interfaces and Q-Learning
implementation

For all datasets, we used an identical set of Q-Learning
parameters: α = 0.1, γ = 0.7 and ε = 0.025. These parameters
were chosen since they seem to work well across a range of
mobility datasets.

Q-Learning Performance: Figure 4 and Figure 5 sum-
marize the energy per successful packet transmisssion and
loss rates observed by our adaptive multi-radio link layer
in comparison with using just one of the radios. In terms
of energy consumption, the Q-Learning approach reduces
energy consumption compared to the XE1205 radio by an
average of 27% (the maximum reduction is 53.6% for the
Outdoor Bus dataset), while incurring roughly 2-4% increased
loss across the four cases. The slightly increased loss rate
of Q-learning is caused by exploring an alternate interface
periodically and transient losses caused while the algorithm is
still learning. Similar energy gains of a maximum of 62.5%
and an average of 44.6% are obtained over an approach that
just uses the CC2420 radio but the improvements in loss rate
are significantly higher (25%-60%). The results show that in
all cases, the energy consumption of the adaptive multi-radio
link layer is better than exclusively using either the CC2420
or XE1205 radio, while keeping the link loss rate to be close
to that observed by the long-range XE1205 radio.

As can be seen, the worst case for the Q-Learning protocol
is the outdoor nomadic trace where our benefits are only
marginal in terms of energy. This is because connectivity using
the CC2420 radio is highly sporadic and also very lossy (65%
loss). Thus, our link layer is unable to take advantage of the
CC2420 radio due to the high dynamics on it.

radio/power-level % packets lost energy consumed
XE1205@0dBm 4.24 .659mJ/Tx Success

XE1205@15dBm 0 .925mJ/Tx Success
CC2420@-25dBm 37.01 1.1mJ/Tx Success
CC2420@0dBm 35.45 1.2mJ/Tx Success

Q-Learning 3.53 .430mJ/Tx Success

TABLE III
STATISTICS FOR MULTIPLE RADIO / POWER CONTROL TRACE
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Fig. 6. Time series trace for indoor continuous mobility pattern showing
cumulative energy consumption for each radio / power-level as well as energy
used for the Q-learning algorithm

C. Algorithm performance for power control across radios

A logical extension to the unified link layer is handling
transmission power control in addition to radio interface
selection. The CC2420 radio is capable of transmitting packets
from -25dBm up to 0dBm, while the XE1205 can transmit
from 0dBm to 15dBm. Increasing transmit power will provide
longer range connectivity but at a higher energy cost; the op-
timum strategy will choose the minimum transmit power level
on the most efficient radio without significantly increasing loss
rate.

To evaluate power control across radio interfaces, we
collected a packet trace similar to the Indoor Continuous
described earlier. In addition to logging retransmissions and
backoffs for the XE1205@15dBm and CC2420@0dBm, we
log similar statistics for the XE1205 and CC2420@0dBm and
-25dBm respectively. The number of states in the Q-Learning
algorithm increases from 2 to 4; we maintain a Q-value for
each radio/power level combination. To reduce exploration
overhead, we only explore the radio/power combinations above
and below the current setting. Logically, the next setting
expected from a mobile node would be one higher if the
distance between sender and receiver has increased and one
lower if the distance has decreased. Such an approach would
scale even if there were more power states being considered
per radio.

Table III summarizes the results and compares the Q-
learning approach to just using one of the two radios at one of
the power levels. As can be seen, Q-learning is 54% better in
terms of energy consumption per successful transmission than
only using the XE1205 radio at 15dBm but has comparable
loss rate. The energy benefits over using the CC2420 radio are
64%; the loss rate also reduces by an order of magnitude.



Switching Protocol State % Time Spent
HIGH ON 10.7
LOW ON 78.1
BOTH ON 11.2

TABLE IV
TIME AND ENERGY SPENT DURING DIFFERENT RECEIVE STATES
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Fig. 7. Energy spent per packet by the sender and receiver. Labels on sender
bars indicate packet loss rates.

Figure 6 shows a time series plot of cumulative energy
consumed for each packet sent for the five schemes. The
staircase shape of the CC2420 radios cumulative energy con-
sumption is caused by the mobility pattern of the sending node;
the portions of the plot with a steep slope indicate that the
radio is consuming an increased amount of energy per packet
because it is moving out of range. Overall, the Q-Learning
based adaptive algorithm sends roughly 40% and 10% the
packets using XE1205 at 0 dBm and 15 dBm; and 25% of the
packets on the CC2520 at -25 dBm and 0 dBm. The results
validate that Q-Learning is able to utilize each power state
opportunistically.

D. Implementation Results

To validate our implementation and show the performance
of the radio switching protocol, we collect a new dataset with
the same mobility pattern as the indoor continuous dataset.
For this experiment, a pair of sender and receiver nodes
run the switching protocol and Q-Learning algorithm online.
This study aims to measure the actual per packet energy
costs incurred by the sender and receiver. In particular, the
receiver can become out-of-sync with the sender, resulting in
the receiver turning both radios on, or timing out, all of which
costs energy and results in more packet losses. Finally, we also
breakdown the % time spent by the receiver in different states
of the receiver state machine.

The maximum data rate achievable by our software im-
plementation for a pair of nodes transmitting continuously
is 70kbps. However, while logging packet statistics to the
external flash, the data rate reduces to 14kbps. This lower
data rate is a result of the Tinynode platform multiplexing
the SPI bus between the XE1205 radio and the external flash
memory. As a result of this issue, the sender and receiver are
not continuously sending data which causes idle gaps to appear
between packets. This forces the receiver to expend additional
energy while waiting for packets to arrive. Since the idle time
is an artifact of our evaluation, we ignore these periods when

presenting results.
To understand the energy efficiency of our protocol at the

sender, Figure 7(a) compares the energy consumed by a single
radio strategy to that of the dual radio implementation. The per
packet energy consumption numbers presented for the CC2420
and XE1205 only cases are from Section VI-B. The results in
Figure 7(a) show that our adaptive algorithm is 64% more
efficient than a CC2420-only scheme, and 43% more efficient
than an XE1205-only scheme verifying the gains found in
simulation. These energy efficiency gains are achieved while
maintaining a loss rate of 1.6% which is not substantially
higher than the XE1205 loss rate of 0.6% and much lower
than the 43.0% loss rate of the CC2420 radio. These results
validate our simulation study and show that substantial sender-
side energy gains are acheivable by opportunistically using the
CC2420 radio, while providing a loss rate comparable to that
of the XE1205 radio.

Figure 7(b) shows the amount of energy consumed at the
receiver as a result of the decisions made by the sender. The
energy efficiency of the receiver will always fall somewhere
between the efficiency of the XE1205 and CC2420 radios,
depending on how often each is used. Bringing up both radio
interfaces is an unavoidable result of the radio switching
protocol and represents overhead beyond that of a single radio
strategy. Our evaluation shows that the dual-radio protocol
used 70% less energy than the XE1205, but 13% more energy
than the CC2420. It is important to note that the receiver uses
an order of magnitude less power than the sender, which means
the sender-side gains overshadow the receiver-side losses.

Finally, Table IV gives a breakdown of the percentage of
packets the receiver spends in each state of the switching
protocol as well as the energy-efficiency associated with each
state. The receiver spends 10.7% of time in the HIGH-ON
state, 78.1% of time in the LOW-ON state and 11.2% of time
in the BOTH-ON state. Ideally the radio switching protocol
will only force the receiver into the BOTH-ON state while
exploring or handing off between radios. Exploration accounts
for 4% of this time, while the other 7.2% is caused by explicit
handoffs and timeouts.

E. Microbenchmarks

In this section, we briefly discuss measurement-based la-
tency and energy consumption microbenchmarks based on our
implementation of the unified link layer. The energy/latency
overhead imposed on the CPU by our multi-radio adaptation
algorithm implementation on the Arthropod is highly efficient
and consumes less than a hundredth of the energy/latency
of the radios used. This shows that the overhead introduced
by software can be compensated by larger performance gains
achieved through intelligent radio selection. The amount of
memory overhead of our implementation is 111 bytes, which
is a very small portion of the available 10kB. A much larger
portion of program memory is required, however, because two
radio stacks need to be instantiated; supporting an additional
radio stack requires an additional 12kB resulting in a total



usage of 29kB out of the available 48kB of program memory,
although we believe that this can be optimized considerably.

F. Parameter Sensitivity

All the results that we have described use an identical set
of Q-Learning parameters: α = 1, γ = 0.75 and ε = 0.04. We
found that a larger α value is generally helpful in mobility
traces due to the need for fast switching. As the traces become
more and more nomadic in nature (i.e. as they involve more
waiting and less movement), the optimal choice of α reduces
a little. However, 0.9 ≤ α ≤ 1 seems to be ideal in almost
all settings. The choice of ε impacts how fast we can switch
but it also impacts the energy consumption. A high ε can lead
to more exploration overhead but is more reactive. We found
that exploration roughly every 10 seconds or so provides a
good balance but this can be tuned depending on expected
dynamics. Finally, we found that the results were not very
sensitive to γ, and works best in the range 0.5 ≤ γ ≤ 0.85.

VII. CONCLUSIONS

In conclusion, we have made two major contributions in
this paper. First, we have outlined the design of a new multi-
radio sensor platform, the Arthropod, that pairs two radios
- CC2420 and XE1205 - that offer diversity in frequency,
power and range. Second, we have presented the design of a
novel Q-Learning driven adaptive link layer that provides the
abstraction of a single radio to applications using the radios,
and transparently switches between radios depending on which
radio offers the most energy-efficient communication channel.
Our experiments using a number of interference and distance
datasets confirm that the system can provide highly effective
adaptation to a wide range of dynamics. Finally, we showed
that the learning algorithm can be easily implemented with
limited memory and computational overhead on a mote-class
sensor platform.
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